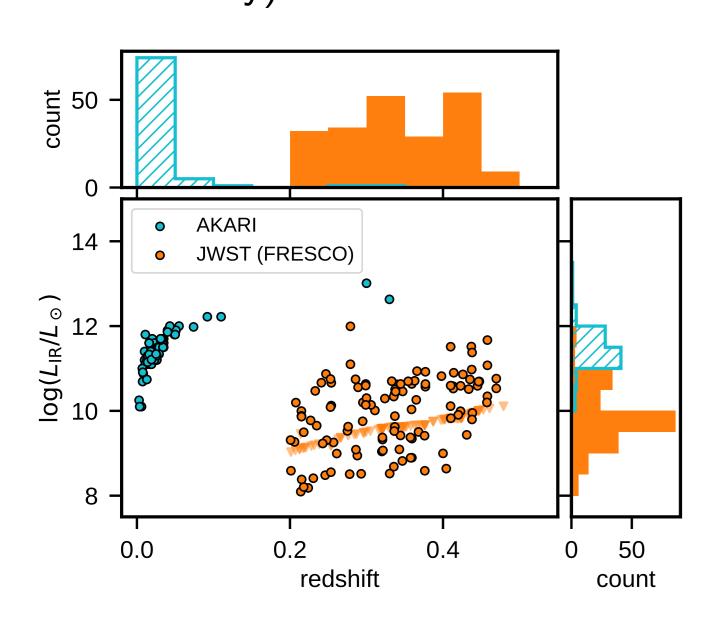
Unveiling the Aromatic and Aliphatic Universe with JWST NIRCam/WFSS

Jianwei Lyu¹, Xuejuan Yang², Aigen Li³, Fengwu Sun⁴, George H. Rieke¹, Stacey Alberts¹, & Irene Shivaei^{1,5}

¹University of Arizona, US ²Xiangtan University, China ³University of Missouri, US ⁴Center for Astrophysics | Harvard & Smithsonian, US ⁵Centro de Astrobiología (CAB), CSIC-INTA, Spain



Introduction: A New View of PAHs with JWST

- ► Polycyclic Aromatic Hydrocarbon (PAH) molecules are ubiquitous and serve as key tracers of star formation (SFR) and galaxy evolution.
- ► The 3.3 μm (aromatic C-H stretch) and 3.4 μm (aliphatic C-H stretch) emission bands provide critical insights into PAH chemistry, structure, and processing.
- ▶ Before JWST, studies of these features were limited to bright $(L_{IR} \ge 10^{11} L_{\odot})$, local $(z \le 0.1)$ galaxies.
- ► The sensitivity of JWST's NIRCam/WFSS allows us, for the first time, to survey these features in statistically significant, less-biased samples of fainter galaxies $(L_{IR} \sim 10^{8.5} - 10^{10} L_{\odot})$ at $z \sim 0.2 - 0.5$.

Data, Sample, and Analysis

- ▶ Data: JWST/NIRCam Wide-Field Slitless Spectroscopy (WFSS) from the Cycle 1 FRESCO legacy program (Oesch+2023). This provides $R \sim 1600$ spectra covering $3.8-5.0~\mu m$.
- **Sample:** 200 galaxies at $z \sim 0.2 0.5$ within the GOODS-S and GOODS-N fields.
- ▶ Analysis: We fit the 3.3 μm aromatic and 3.4 μm aliphatic features using Drude profiles. We use extensive ancillary data (HST, Spitzer, etc.) and SED fitting (Prospector) to derive galaxy properties (L_{IR} , SFR, M_* , metallicity).

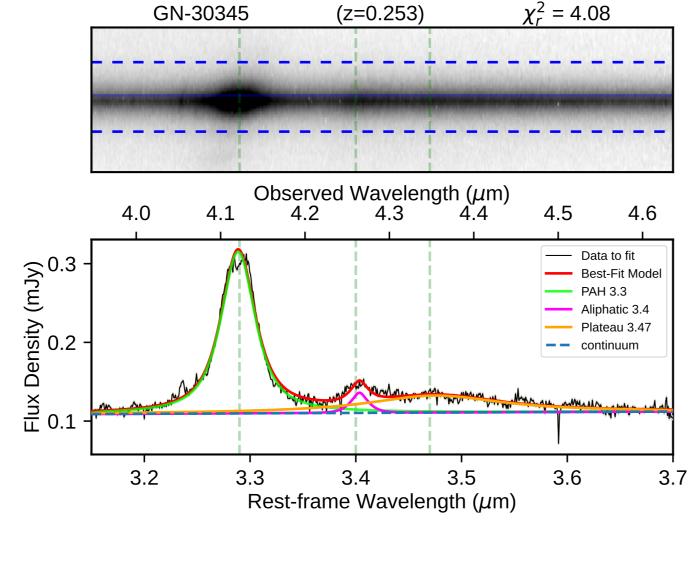
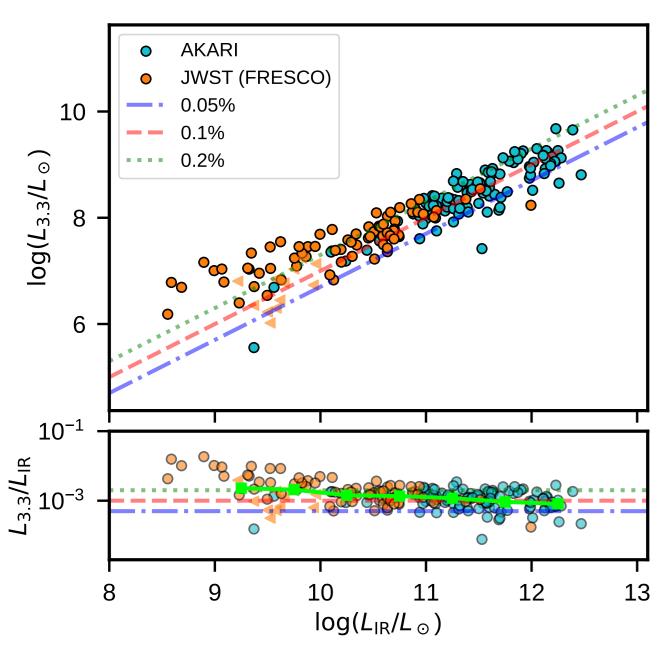


Figure 1 Our JWST/FRESCO sample fainter than previous AKARI samples (blue) at z > 0.1.

Figure 2 Example NIRCam/WFSS spectrum of a galaxy (GN-30345 at (orange) probes galaxies \sim 100-1000x $_Z=0.253$) showing clear detections of the 3.3 μm (green) and 3.4 μm (magenta) features.


The 3.3 μ m Aromatic Band: A Robust SFR Tracer

The 3.3 μm aromatic feature ($L_{3.3}$) was detected in 88/187 galaxies.

- \triangleright $L_{3,3}$ shows a tight correlation with total IR luminosity (L_{IR}) (Pearson $r \approx 0.71$) and SED-derived SFR.
- \triangleright This confirms $L_{3,3}$ as a valid SFR tracer across 3 orders of magnitude in L_{IR} .
- ▶ We derive a new, robust calibration that coverage SFRs over a range of $\sim 0.1-300 \ M_{\odot} \text{yr}^{-1}$:

$$log(\frac{SFR}{M_{\odot}vr^{-1}}) = log(\frac{L_{3.3}}{L_{\odot}}) - (7.17 \pm 0.32)$$

 \blacktriangleright This tight correlation establishes the usage of the 3.3 μ m PAH feature to infer SFRs in large statistical samples of galaxies across cosmic time.

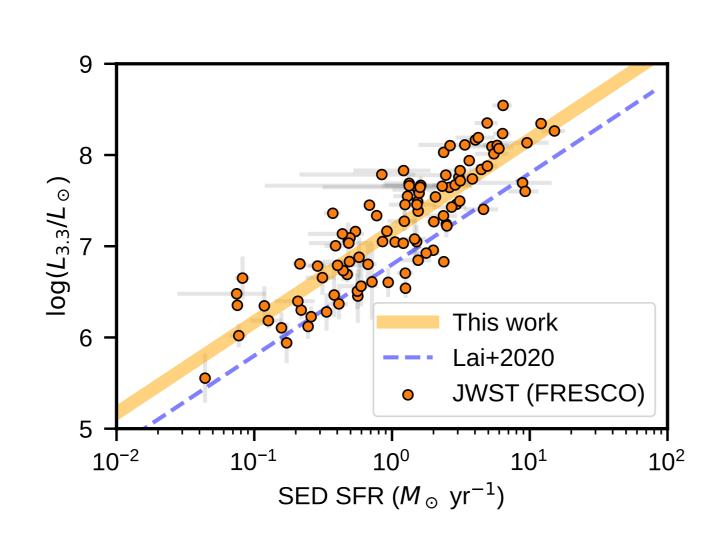


Figure 3 The strong correlation between 3.3 μm PAH luminosity ($L_{3.3}$) and total IR luminosity (L_{IR}) .

Figure 4 $L_{3.3}$ vs. the SED-derived SFR, showing a tight relationship (orange line is our best fit).

Results: PAH Properties vs. Galaxy Environment

- 1. Aromatic PAH Deficiency in Low-Metallicity Galaxies
- ▶ The relative strength of the 3.3 μm feature $(L_{3.3}/L_{IR})$ shows a **strong** metallicity dependence.
- ▶ The ratio drops by a factor of ≥ 10 at $12 + log(O/H) \sim 8.4 8.5$ (toward lower metallicities).
- ► This is consistent with models where PAHs are either more rapidly destroyed by harder radiation fields or have their formation (from AGB stars) delayed in metal-poor environments.

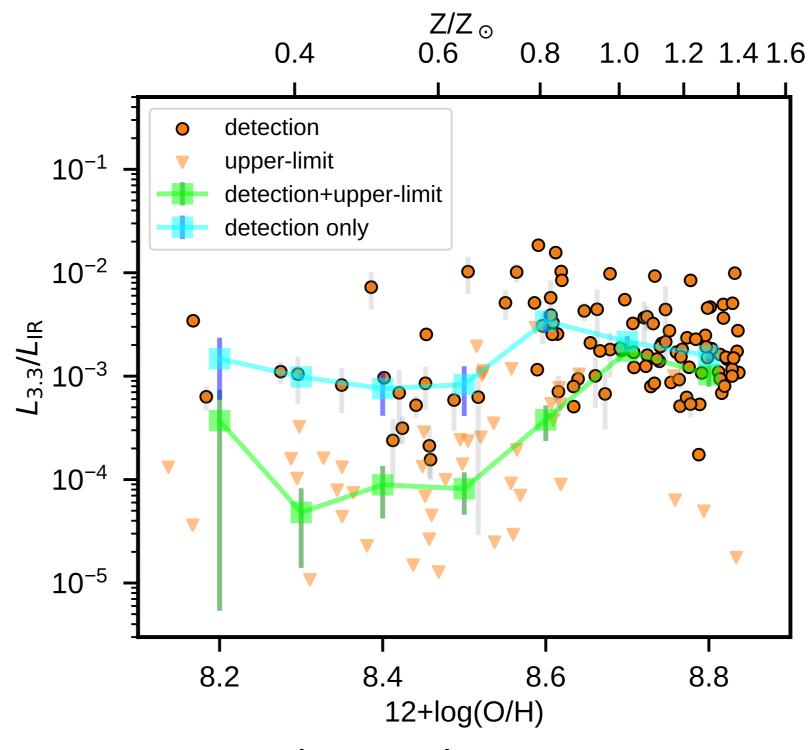


Figure 5 The aliphatic-to-aromatic $(L_{3.4}/L_{3.3})$ *decreases* at higher SFRs, indicating destruction of aliphatic components.

2. Aliphatic (3.4 μm) Content Destroyed by Star Formation

- ▶ The weaker 3.4 μm aliphatic feature was detected in 37/159 galaxies.
- ▶ The aliphatic-to-aromatic ratio $(L_{3.4}/L_{3.3})$ shows a clear **negative correlation** with SFR, L_{IR} , and $L_{3.3}$.
- ▶ Interpretation: UV photons from active star-forming regions preferentially strip off or "destroy" the less-stable aliphatic side groups from the core PAH molecules.

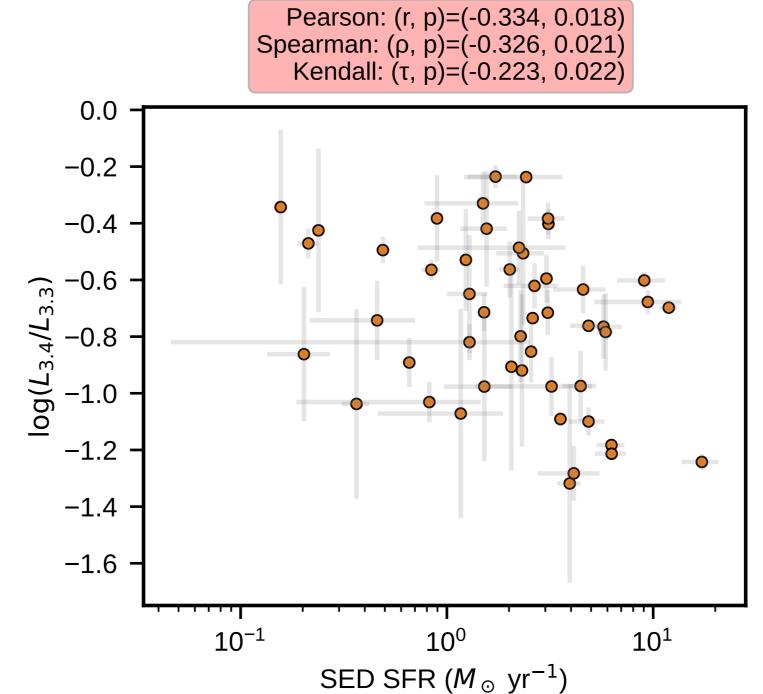


Figure 6 The aliphatic-to-aromatic ratio $(L_{3.4}/L_{3.3})$ *decreases* at higher SFRs, indicating destruction of aliphatic components.

3. PAH Aliphacity: A Local Process

- ► The $L_{3.4}/L_{3.3}$ ratio shows **no significant correlation** with global properties like redshift, stellar mass, metallicity, or galaxy morphology.
- ► This strongly suggests that the processing of PAH aliphatic content is governed by local conditions (i.e., the local UV radiation field) rather than the global properties of the host galaxy.

Summary & Conclusions

- \blacktriangleright We present the first systematic survey of 3.3 μm (aromatic) and 3.4 μm (aliphatic) PAH features in a large, unbiased sample of galaxies at $z \sim 0.2-0.5$, probing IR luminosities 100x fainter than previous studies.
- \blacktriangleright We confirm the 3.3 μm PAH feature as a **robust SFR tracer** and provide a new calibration.
- \blacktriangleright We find that this 3.3 μm emission is suppressed in low-metallicity galaxies.
- ▶ The aliphatic-to-aromatic ratio $(L_{3.4}/L_{3.3})$ is anti-correlated with SFR, suggesting that aliphatic components are destroyed by UV photons in active star-forming regions.
- ► This processing of aliphatic PAHs appears to be a **local phenomenon**, independent of global galaxy properties like mass or morphology.

References

Lyu, J., Yang, X., Li, A., et al. 2025, *ApJ*, 986, 156 Oesch, P. A., Brammer, G., et al. 2023, *MNRAS*, 525, Lai, T. S. Y., Smith, J. D. T., et al. 2020, ApJ, 905, 2864 55