Precise Optical-Infrared Spectroscopic Extinction Curves

Kenji Emerson¹, Adwin Boogert²

1 Institute for Astronomy at Hilo -- 640 North A'ohōkū Place Hilo, HI, USA

2 Institute for Astronomy at Mānoa -- 2680 Woodlawn Drive Honolulu, HI, USA

Introduction

Interstellar extinction curves are a prime diagnostic of dust grain properties in the ISM; reflecting grain size and composition distributions. They are also used for spectral foreground extinction correction.

Variations in the shape of the extinction curve, characterized by R(V)=A(V)/E(B-V) and the power law index α in the infrared, trace variations in grain size distribution and composition, where larger R(V) values imply larger grains [1,5,6].

Broad-band photometry extinction curves have low resolving power, limiting photospheric continuum and line absorption corrections. Spectroscopic extinction curves focus on subsets of the optical-infrared range.

We derive opto-infrared spectroscopic extinction curves using the pair method: where an observed reddened star is divided by an non-reddened companion with similar stellar properties. We focus on singular early-type main sequence stars, with a foray to cooler later-type stars.

Methods & Data

We observed OBA-type stars reddened by diffuse dust or the edges of dense clouds or shocked regions: $0.2 \le E(B-V) \le 2$. Corresponding non-reddened OBA-type stars were observed. We determined extinction pairs by self-similar spectral lines, mostly H and He, minimizing their Pearson χ^2 criterion.

We obtained optical (0.32 μ m $\leq \lambda \leq 1.0 \mu$ m) spectra using the UH88 SNIFS spectrograph, with near-infrared (0.7 μ m $\leq \lambda \leq 4.2 \mu$ m) spectra from IRTF SpeX in SXD and LXD_short modes.

We derive extinction curves similar to Decleir 2022 [1]. To derive A(V), we fit E(λ -V) (normalized based on F(550 nm), a proxy of \hat{V}) to a power law $[A(\lambda)/A(V) \sim S\lambda^{-\alpha}]$ in the infrared to derive A(V)and extinction $A(\lambda)/A(V)$. Multi-chain MCMC is used to derive these values and uncertainties.

$$A(V) = -\lim_{\lambda \to \infty} A(V) \left(\frac{A(\lambda)}{A(V)} - 1 \right) \quad \frac{A(\lambda)}{A(V)} = \frac{E(\lambda - V)}{A(V)} + 1$$

Due to SNIFS B-channel calibration issues, we estimate R(V) by fitting our curves to Gordon 2023 [2] curves. We also define an alternative shape indicator similar to R(V): R(X), Fig 2.

$$R(X) = \frac{A(1\mu m)}{A(0.66\mu m) - A(1\mu m)}$$

Results

We present our first results using 10 of our extinction curves, with 4 sight lines associated with the edges of molecular clouds ("Dense") and 1 associated with a supernova remnant ("Shocked").

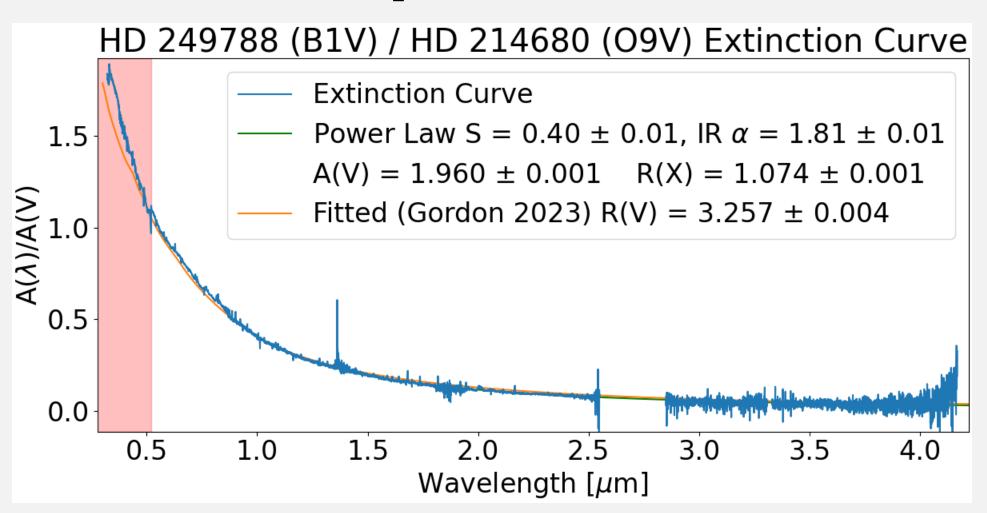


Fig 1. One of our diffuse extinction curves; masked areas have poor atmospheric transmission, the shaded red area is unreliable due to SNIFS B-channel. We find that our extinction curves match well to other results from the literature [1,2].

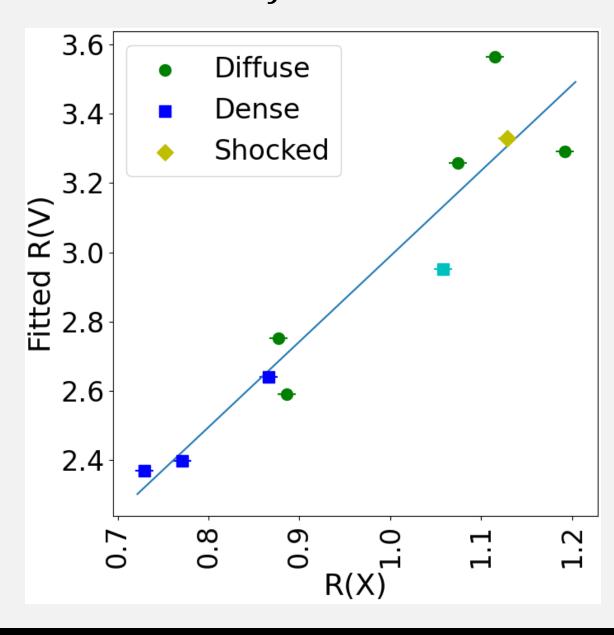


Fig 2. We use R(X)as a more direct measure of the extinction curve shape, in addition to fits with the *Gordon 2023 R(V)* curves.

Cooler Types

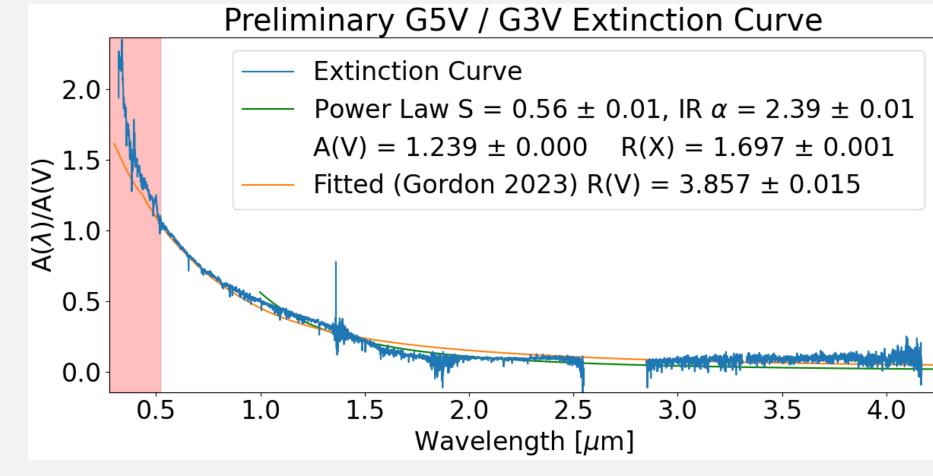


Fig 4. A preliminary extinction curve of G-type stars, plotted similar to Fig 1, shows promise for extinction curves using cooler type stars.

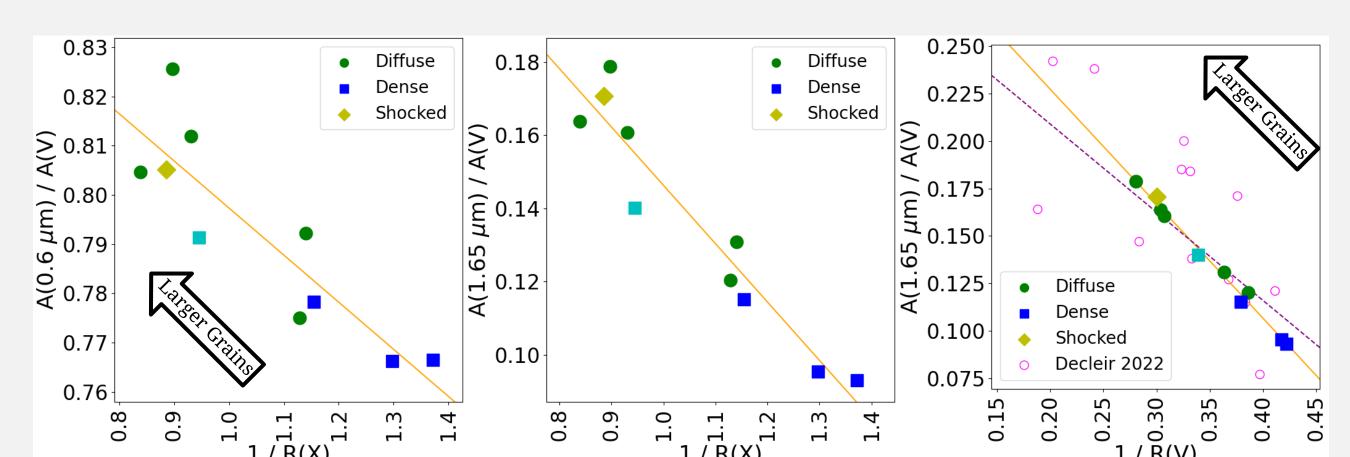


Fig 3abc. The shape of our extinction curves have a correlation with 1/R(X) or 1/R(V) (as estimated [2]). This correlation holds with both diffuse and dense/shocked sight lines. For comparison, we over-plot data from Decleir [1] Fig. 13; marked is the average galactic diffuse R(V) = 3.1 [3]. Linear fits are for our data (orange) and Decleir (pink) as published. The cyan "dense" sight line has a 3.1 µm ice feature [4].

Summary

• We obtained optical and near-infrared (0.32 μ m $\leq \lambda \leq 4.2 \mu$ m) spectra, deriving extinction curves for 10 sight lines (Fig 1).

Four sight lights are associated with edges of molecular clouds and one with a supernova remnant. Our extinction curves have good agreement between other studies using subsets of the optical-infrared range [1] and studies synthesizing them [2].

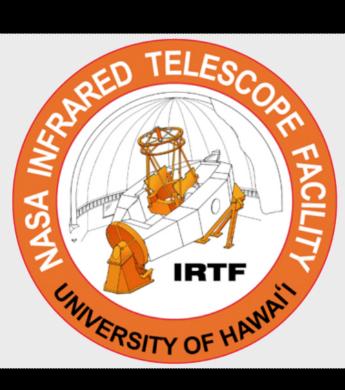
 We find correlations between our extinction curve and R(X) (and R(V), by proxy) Fig 3abc; the tight correlation aligns with literature [1] results on the R(V)-dependence of extinction curves [3].

These correlations, along with the R(X) and R(V) correlation, show that R(V)-dependence of extinction curves affect a wide range of wavelength regions, not just the defining B and V bands for R(V). This supports literature [1] that extinction curves are a family of functions based mainly on R(V).

- We tentatively find lower R(V) values (smaller grains) at dense cloud edges and higher R(V) near shocked regions. This is opposite of expectations [5], and analysis of the larger sample is warranted.
- Deriving extinction curves with the pair-method using cooler stars (FGK-type) show promise (Fig 4), although it is complicated by the numerous metal lines present.
- Future work in this project is to determine if any trends of R(V) with line of sight conditions can be found.
- SPECTRE, an upcoming IRTF integral-field-unit spectrograph instrument [7], instantaneously covers the same optical-infrared wavelength range and can derive extinction curves with improved accuracy.

Contact:

Kenji Emerson: kemerson@hawaii.edu Adwin Boogert: aboogert@hawaii.edu


Acknowledgments:

The NASA Infrared Telescope Facility (IRTF) is operated by the University of Hawaii under contract 80HQTR24DA010 in partnership with NASA.

References:

- [1] M. Decleir et. al. 2022 ApJ Volume 930, Issue 1, id.15, 21 pp. (2022ApJ...930...15D)
 [2] K. Gordon et. al. 2023 ApJ Volume 950, Issue 2, id.86, 13 pp. (2023ApJ...950...86G)
 [3] J. Cardelli et. al. 1989 ApJ Volume 345, Page 245 (1989ApJ...345..245C)

- [4] A. Boogert et. al. 2015 ARAA Volume 53, pp. 541-581 (2015ARA&A..53..541B)
- [5] J. Weingartner et. al. 2001 ApJ Volume 548, Issue 1, pp. 296-309 (2001ApJ...548..296W)
 [6] E. Fitzpatrick 1999 PASP Volume 111, Issue 755, pp. 63-75. (1999PASP..111...63F)
 [7] M. Connelley et. al. 2022 SPIE Volume 12184, id. 121847X 13 pp. (2022SPIE12184E..7XC)

