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Abstract \We present monolayer-resolved modelling of molecular ice freeze-out on dust grains. Our approach tracks dust and gas phase species as
they evolve through core contraction, allowing us to predict how different collapse scenarios affect the dust grain chemical inventory available to later
protoplanetary systems. Our results demonstrate that collapse dynamics drive chemical differentiation between cores with identical initial
compositions.

Introduction

Layer-by-layer modelling shows how Pl S
collapse dynamics shape molecular freeze-
out and the build-up of icy mantles.

*Four collapse models: Bonnor-Ebert
(L1544), Inside-out, transient wave and free-
fall linked with gas—grain chemistry.

Inner ice layers record local chemical

history; these vary among the collapse
models even with the same initial

conditions.
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When the main carbon reservoir remains in CO, this keeps a more
primitive composition and stops carbon from forming CH, which
sequentially stops the formation of longer carbon chains, when CH,
dominates, longer carbon chains can readily form
Summary
Warm carbon-chain vs hot oxygen-rich mature cores arise from Different core collapse models follow unique paths through
identical starting conditions. Formation of carbon-rich ices with complex temperature and density space, directly influencing which molecules
organics or oxygen-dominated ices depends on the collapse pathway, freeze onto dust grains at each stage.

highlighting the role of physical evolution in shaping chemical diversity.

[1] adapted from: Maitrey S, Majumdar L, Manilal V, Srivastava B, Rayalacheruvu P, Willacy K, et al. Insights from the PEGASIS
three-phase astrochemical model. Astron Astrophys. 2025;699:A332. doi:10.1051/0004-6361/202554717.




